Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells.
نویسندگان
چکیده
Cell surface-bound receptors represent suitable entry sites for gene delivery into cells by receptor-mediated endocytosis. Here we have taken advantage of the mannose receptor that is highly expressed on antigen-presenting dendritic cells for targeted gene transfer by employing mannosylpolyethylenimine (ManPEI) conjugates. Several ManPEI conjugates were synthesized and used for formation of ManPEI/DNA transfection complexes. Conjugates differed in the linker between mannose and polyethylenimine (PEI) and in the size of the PEI moiety. We demonstrate that ManPEI transfection is effective in delivering DNA into mannose receptor-expressing cells. Uptake of ManPEI/DNA complexes is receptor-specific, since DNA delivery can be competed with mannosylated albumin. Additionally, incorporation of adenovirus particles into transfection complexes effectively enhances transgene expression. This is particularly important for primary immunocompetent dendritic cells. It is demonstrated here that dendritic cells transfected with ManPEI/DNA complexes containing adenovirus particles are effective in activating T cells of T cell receptor transgenic mice in an antigen-specific fashion.
منابع مشابه
Effective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملAptamer-based Targeted Delivery of miRNA let-7d to Gastric Cancer Cells as a Novel Anti-Tumor Therapeutic Agent
miRNAs as one of the potential therapeutic agents have been recently considered for cancer treatment. AS1411 (aptNCL) is a DNA aptamer specifically binding to nucleolin protein on the cancer cell surface with antiproliferative effect. The aim of the study was to develop a conjugate consisted of aptNCL (as targeted delivery of therapeutic agent) and miRNA let-7d (as a tumor suppressor) using two...
متن کاملAptamer-based Targeted Delivery of miRNA let-7d to Gastric Cancer Cells as a Novel Anti-Tumor Therapeutic Agent
miRNAs as one of the potential therapeutic agents have been recently considered for cancer treatment. AS1411 (aptNCL) is a DNA aptamer specifically binding to nucleolin protein on the cancer cell surface with antiproliferative effect. The aim of the study was to develop a conjugate consisted of aptNCL (as targeted delivery of therapeutic agent) and miRNA let-7d (as a tumor suppressor) using two...
متن کاملMannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells
BACKGROUND To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs) more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI-TEG) and a series of its mannosylated derivatives. METHODS PEI-TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linke...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 27 شماره
صفحات -
تاریخ انتشار 1999